27 Mar

Hi GIS fellows ! Here is a spring present, let’s see how to simply create an hillshade based on the acquisition date and time !

```sunPosition <- function(year, month, day, hour=12, min=0, sec=0, lat=46.5, long=6.5) {   twopi <- 2 * pi deg2rad <- pi / 180   # Get day of the year, e.g. Feb 1 = 32, Mar 1 = 61 on leap years month.days <- c(0,31,28,31,30,31,30,31,31,30,31,30) day <- day + cumsum(month.days)[month] leapdays <- year %% 4 == 0 & (year %% 400 == 0 | year %% 100 != 0) & day >= 60 & !(month==2 & day==60) day[leapdays] <- day[leapdays] + 1   # Get Julian date - 2400000 hour <- hour + min / 60 + sec / 3600 # hour plus fraction delta <- year - 1949 leap <- trunc(delta / 4) # former leapyears jd <- 32916.5 + delta * 365 + leap + day + hour / 24   # The input to the Atronomer's almanach is the difference between # the Julian date and JD 2451545.0 (noon, 1 January 2000) time <- jd - 51545.   # Ecliptic coordinates   # Mean longitude mnlong <- 280.460 + .9856474 * time mnlong <- mnlong %% 360 mnlong[mnlong < 0] <- mnlong[mnlong < 0] + 360   # Mean anomaly mnanom <- 357.528 + .9856003 * time mnanom <- mnanom %% 360 mnanom[mnanom < 0] <- mnanom[mnanom < 0] + 360 mnanom <- mnanom * deg2rad   # Ecliptic longitude and obliquity of ecliptic eclong <- mnlong + 1.915 * sin(mnanom) + 0.020 * sin(2 * mnanom) eclong <- eclong %% 360 eclong[eclong < 0] <- eclong[eclong < 0] + 360 oblqec <- 23.439 - 0.0000004 * time eclong <- eclong * deg2rad oblqec <- oblqec * deg2rad   # Celestial coordinates # Right ascension and declination num <- cos(oblqec) * sin(eclong) den <- cos(eclong) ra <- atan(num / den) ra[den < 0] <- ra[den < 0] + pi ra[den >= 0 & num < 0] <- ra[den >= 0 & num < 0] + twopi dec <- asin(sin(oblqec) * sin(eclong))   # Local coordinates # Greenwich mean sidereal time gmst <- 6.697375 + .0657098242 * time + hour gmst <- gmst %% 24 gmst[gmst < 0] <- gmst[gmst < 0] + 24.   # Local mean sidereal time lmst <- gmst + long / 15. lmst <- lmst %% 24. lmst[lmst < 0] <- lmst[lmst < 0] + 24. lmst <- lmst * 15. * deg2rad   # Hour angle ha <- lmst - ra ha[ha < -pi] <- ha[ha < -pi] + twopi ha[ha > pi] <- ha[ha > pi] - twopi   # Latitude to radians lat <- lat * deg2rad   # Azimuth and elevation el <- asin(sin(dec) * sin(lat) + cos(dec) * cos(lat) * cos(ha)) az <- asin(-cos(dec) * sin(ha) / cos(el))   # For logic and names, see Spencer, J.W. 1989. Solar Energy. 42(4):353 cosAzPos <- (0 <= sin(dec) - sin(el) * sin(lat)) sinAzNeg <- (sin(az) < 0) az[cosAzPos & sinAzNeg] <- az[cosAzPos & sinAzNeg] + twopi az[!cosAzPos] <- pi - az[!cosAzPos]     el <- el / deg2rad az <- az / deg2rad lat <- lat / deg2rad   return(list(elevation=el, azimuth=az)) }       # calculate the sun position from date and time position<-sunPosition(2012, 05, 25, hour=15, min=40, sec=42.460,lat=d_wgs@coords[2], long=d_wgs@coords[1])   system(paste('gdaldem hillshade', '-of GTiff', '-az',position\$azimuth, '-alt',position\$elevation, paste('/path_to_data/dtm_file','.tif',sep=''), paste('/path_to_data/dtm_file','_hillshade.tif',sep='')))```